Course Title:
Partial Differential Equations 2
Course Description:
Continues MTH G202. Comprises advanced topics in linear and nonlinear partial differential equations, with applications. Topics include pseudodifferential operators and regularity of solutions for elliptic equations; elements of microlocal analysis; propagation of singularities; elements of spectral theory of elliptic operators; properties of eigenvalues and eigenfunctions; variational principle for eigenvalues and its applications; the Schrödinger equation and its meaning in quantum mechanics; parabolic equations and their role in describing heat and diffusion processes; hyperbolic equations and propagation of waves; the Cauchy problem for hyperbolic equations and hyperbolic systems; elements of scattering theory; nonlinear elliptic equations in Riemannian geometry including the Yamabe problem, prescribed scalar curvature problem, and Einstein-Kähler metrics; the Navier-Stokes equations in hydrodynamics; simplest properties and open problem nonlinear hyperbolic equations and shock waves; the Korteweg-de Vries equation and its relation to inverse scattering problems; and solitons and algebra-geometric solutions.
Fall Offering:
None
Lab/Coreq 1:
Spring Offering:
None
Lab/Coreq 2:
Summer Offering:
None
Lab/Coreq Remarks:
Summer 1 Offering:
None
Prerequisite 1:
MTH G202
Summer 2 Offering:
None
Prerequisite 2:
MTH G301
Cross-Listed Course 1:
Prerequisite 3:
Cross-Listed Course 2:
Prerequisite 4:
Cross-Listed Course 3:
Prerequisite 5:
Cross-Listed Course 4:
Prerequisite Remarks:
Cross-Listed Course 5:
Repeatable:
N